Java网络编程面试题(一)
# JAVA网络编程面试题
# 1、TCP和UDP的区别
TCP:是面向连接的流传输控制协议,具有高可靠性,确保传输数据的正确性,有验证重发机制,因此不会出现丢失或乱序。
UDP:是无连接的数据报服务,不对数据报进行检查与修改,无须等待对方的应答,会出现分组丢失、重复、乱序,但具有较好的实时性,UDP段结构比TCP的段结构简单,因此网络开销也小。
# 2、TCP连接建立的时候3次握手,断开连接的4次握手的具体过程
- 建立连接采用的3次握手协议,具体是指:
- 第一次握手是客户端connect连接到server。
- 第二次server accept client的请求之后,向client端发送一个消息,相当于说我都准备好了,你连接上我了。
- 第三次 就是client向server发送的,就是对第二次握手消息的确认。之后client和server就开始通讯了。
2.断开连接的4次握手,具体如下:
- 断开连接的一端发送close请求是第一次握手
- 另外一端接收到断开连接的请求之后需要对close进行确认,发送一个消息,这是第二次握手
- 发送了确认消息之后还要向对端发送close消息,要关闭对对端的连接,这是第3次握手
- 而在最初发送断开连接的一端接收到消息之后,进入到一个很重要的状态time_wait状态,这个状态也是面试官经常问道的问题,最后一次握手是最初发送断开连接的一端接收到消息之后。对消息的确认。
# 3、什么是同步?什么是异步?
同步:如果有多个任务或者事件要发生,这些任务或者事件必须逐个地进行,一个事件或者任务的执行会导致整个流程的暂时等待,这些事件没有办法并发地执行;
异步:如果有多个任务或者事件发生,这些事件可以并发地执行,一个事件或者任务的执行不会导致整个流程的暂时等待。
# 4、.什么是阻塞?什么是非阻塞?
阻塞:当某个事件或者任务在执行过程中,它发出一个请求操作,但是由于该请求操作需要的条件不满足,那么就会一直在那等待,直至条件满足;
非阻塞:当某个事件或者任务在执行过程中,它发出一个请求操作,如果该请求操作需要的条件不满足,会立即返回一个标志信息告知条件不满足,不会一直在那等待。
# 5、什么是阻塞IO?什么是非阻塞IO?
在了解阻塞IO和非阻塞IO之前,先看下一个具体的IO操作过程是怎么进行的。通常来说,IO操作包括:
对硬盘的读写、对socket的读写以及外设的读写。 当用户线程发起一个IO请求操作(本文以读请求操作为例),
1. 内核会去查看要读取的数据是否就绪,对于阻塞IO来说,如果数据没有就绪,则会一直在那等待,直到数据就绪;
2. 对于非阻塞IO来说,如果数据没有就绪,则会返回一个标志信息告知用户线程当前要读的数据没有就绪。
3. 当数据就绪之后,便将数据拷贝到用户线程,这样才完成了一个完整的IO读请求操作,也就是说一个完整的IO读请求操作包括两个阶段:
1. 查看数据是否就绪;
2. 进行数据拷贝(内核将数据拷贝到用户线程)。
那么阻塞(blocking IO)和非阻塞(non-blocking IO)的区别就在于第一个阶段,如果数据没有就绪,在查看数据是否就绪的过程中是一直等待,还是直接返回一个标志信息。
Java中传统的IO(BI/O)都是阻塞IO,比如通过socket来读数据,调用read()、accept()、write()方法之后,如果数据没有就绪,当前线程就会一直阻塞在read方法调用那里,直到有数据才返回;
而如果是非阻塞IO的话,当数据没有就绪,read()方法应该返回一个标志信息,告知当前线程数据没有就绪,而不是一直在那里等待。
# 6、什么是同步IO?什么是异步IO?
我们先来看一下同步IO和异步IO的定义,在《Unix网络编程》一书中对同步IO和异步IO的定义是这样的:
A synchronous I/O operation causes the requesting process to be blocked until that I/O operation completes.
An asynchronous I/O operation does not cause the requesting process to be blocked.
从字面的意思可以看出:同步IO即 如果一个线程请求进行IO操作,在IO操作完成之前,该线程会被阻塞;而异步IO为 如果一个线程请求进行IO操作,IO操作不会导致请求线程被阻塞。
事实上,同步IO和异步IO模型是针对用户线程和内核的交互来说的:
对于同步IO:当用户发出IO请求操作之后,如果数据没有就绪,需要通过用户线程或者内核不断地去轮询数据是否就绪,当数据就绪时,再将数据从内核拷贝到用户线程;
而异步IO:只有IO请求操作的发出是由用户线程来进行的,IO操作的两个阶段都是由内核自动完成,然后发送通知告知用户线程IO操作已经完成。也就是说在异步IO中,不会对用户线程产生任何阻塞。
这是同步IO和异步IO关键区别所在,同步IO和异步IO的关键区别反映在数据拷贝阶段是由用户线程完成还是内核完成。所以说异步IO必须要有操作系统的底层支持。
注意同步IO和异步IO与阻塞IO和非阻塞IO是不同的两组概念。
阻塞IO和非阻塞IO是反映在当用户请求IO操作时,如果数据没有就绪,是用户线程一直等待数据就绪,还是会收到一个标志信息这一点上面的。也就是说,阻塞IO和非阻塞IO是反映在IO操作的第一个阶段,在查看数据是否就绪时是如何处理的。
# 7、 IO模型有几种?分别是什么?
在《Unix网络编程》一书中提到了五种IO模型
分别是:阻塞IO、非阻塞IO、多路复用IO、信号驱动IO以及异步IO。
下面就分别来介绍一下这5种IO模型的异同。
# 1.阻塞IO模型
最传统的一种IO模型,即在读写数据过程中会发生阻塞现象。
当用户线程发出IO请求之后,内核会去查看数据是否就绪,如果没有就绪就会等待数据就绪,而用户线程就会处于阻塞状态,用户线程交出CPU。当数据就绪之后,内核会将数据拷贝到用户线程,并返回结果给用户线程,用户线程才解除block状态。
典型的阻塞IO模型的例子为:
data = socket.openinputstream();
如果数据没有就绪,就会一直阻塞在read方法。
# 2.非阻塞IO模型
当用户线程发起一个read操作后,并不需要等待,而是马上就得到了一个结果。如果结果是一个error时,它就知道数据还没有准备好,于是它可以再次发送read操作。一旦内核中的数据准备好了,并且又再次收到了用户线程的请求,那么它马上就将数据拷贝到了用户线程,然后返回。
所以事实上**,在非阻塞IO模型中,用户线程需要不断地询问内核数据是否就绪,也就说非阻塞IO不会交出CPU,而会一直占用CPU.**
典型的非阻塞IO模型一般如下:
伪代码
while(true){
new MyThread(socket);
}
class MyThread{
data = socket.read();
if(data!= error){
处理数据
break;
}
2
3
4
5
6
7
8
9
10
11
但是对于非阻塞IO就有一个非常严重的问题,在while循环中需要不断地去询问内核数据是否就绪,这样会导致CPU占用率非常高,因此一般情况下很少使用while循环这种方式来读取数据.
# 3.多路复用IO模型
多路复用IO模型是目前使用得比较多的模型。Java NIO实际上就是多路复用IO。
在多路复用IO模型中,会有一个线程不断去轮询多个socket的状态,只有当socket真正有读写事件时,才真正调用实际的IO读写操作。因为在多路复用IO模型中,只需要使用一个线程就可以管理多个socket,系统不需要建立新的进程或者线程,也不必维护这些线程和进程,并且只有在真正有socket读写事件进行时,才会使用IO资源,所以它大大减少了资源占用.
在Java NIO中,是通过selector.select()去查询每个通道是否有到达事件,如果没有事件,则一直阻塞在那里,因此这种方式会导致用户线程的阻塞。
也许有朋友会说,我可以采用 多线程+ 阻塞IO 达到类似的效果,但是由于在多线程 + 阻塞IO 中,每个socket对应一个线程,这样会造成很大的资源占用,并且尤其是对于长连接来说,线程的资源一直不会释放,如果后面陆续有很多连接的话,就会造成性能上的瓶颈。
而多路复用IO模式,通过一个线程就可以管理多个socket,只有当socket真正有读写事件发生才会占用资源来进行实际的读写操作。因此,多路复用IO比较适合连接数比较多的情况。
另外多路复用IO为何比非阻塞IO模型的效率高是因为在非阻塞IO中,不断地询问socket状态时通过用户线程去进行的,而在多路复用IO中,轮询每个socket状态是内核在进行的,这个效率要比用户线程要高的多。
不过要注意的是,多路复用IO模型是通过轮询的方式来检测是否有事件到达,并且对到达的事件逐一进行响应。因此对于多路复用IO模型来说,一旦事件响应体很大,那么就会导致后续的事件迟迟得不到处理,并且会影响新的事件轮询.
# 4.信号驱动IO模型
在信号驱动IO模型中,当用户线程发起一个IO请求操作,会给对应的socket注册一个信号函数,然后用户线程会继续执行,当内核数据就绪时会发送一个信号给用户线程,用户线程接收到信号之后,便在信号函数中调用IO读写操作来进行实际的IO请求操作。
# 5.异步IO模型
异步IO模型才是最理想的IO模型,在异步IO模型中,当用户线程发起read操作之后,立刻就可以开始去做其它的事。
而另一方面,从内核的角度,当它受到一个asynchronous read之后,它会立刻返回,说明read请求已经成功发起了,因此不会对用户线程产生任何block。
然后,内核会等待数据准备完成,然后将数据拷贝到用户线程,当这一切都完成之后,内核会给用户线程发送一个信号,告诉它read操作完成了。
也就说用户线程完全不需要实际的整个IO操作是如何进行的,只需要先发起一个请求,当接收内核返回的成功信号时表示IO操作已经完成,可以直接去使用数据了。
也就说在异步IO模型中,IO操作的两个阶段都不会阻塞用户线程,这两个阶段都是由内核自动完成,然后发送一个信号告知用户线程操作已完成。
用户线程中不需要再次调用IO函数进行具体的读写。
这点是和信号驱动模型有所不同的
在信号驱动模型中,当用户线程接收到信号表示数据已经就绪,然后需要用户线程调用IO函数进行实际的读写操作;而在异步IO模型中,收到信号表示IO操作已经完成,不需要再在用户线程中调用iO函数进行实际的读写操作。
注意,异步IO是需要操作系统的底层支持,在Java 7中,提供了Asynchronous IO。也就是java中的AIO NIO2.0。
前面四种IO模型实际上都属于同步IO,只有最后一种是真正的异步IO,因为无论是多路复用IO还是信号驱动模型,IO操作的第2个阶段都会引起用户线程阻塞,也就是内核进行数据拷贝的过程都会让用户线程阻塞。
# 8、 Reactor和Proactor IO设计模式是什么?
在传统的网络服务设计模式中,有两种比较经典的模式:
一种是 多线程,一种是线程池。
对于多线程模式,也就说来了client,服务器就会新建一个线程来处理该client的读写事件,如下图所示:

这种模式虽然处理起来简单方便,但是由于服务器为每个client的连接都采用一个线程去处理,使得资源占用非常大。因此,当连接数量达到上限时,再有用户请求连接,直接会导致资源瓶颈,严重的可能会直接导致服务器崩溃。
因此,为了解决这种一个线程对应一个客户端模式带来的问题,提出了采用线程池的方式,也就说创建一个固定大小的线程池,来一个客户端,就从线程池取一个空闲线程来处理,当客户端处理完读写操作之后,就交出对线程的占用。因此这样就避免为每一个客户端都要创建线程带来的资源浪费,使得线程可以重用。
但是线程池也有它的弊端,如果连接大多是长连接,因此可能会导致在一段时间内,线程池中的线程都被占用,那么当再有用户请求连接时,由于没有可用的空闲线程来处理,就会导致客户端连接失败,从而影响用户体验。因此,线程池比较适合大量的短连接应用。
因此便出现了下面的两种高性能IO设计模式:Reactor和Proactor。
在Reactor模式中,会先对每个client注册感兴趣的事件,然后有一个线程专门去轮询每个client是否有事件发生,当有事件发生时,便顺序处理每个事件,当所有事件处理完之后,便再转去继续轮询,如下图所示:

多路复用IO就是采用Reactor模式。注意,上面的图中展示的 是顺序处理每个事件,当然为了提高事件处理速度,可以通过多线程或者线程池的方式来处理事件。
在Proactor模式中,当检测到有事件发生时,会新起一个异步操作,然后交由内核线程去处理,当内核线程完成IO操作之后,发送一个通知告知操作已完成,可以得知,异步IO模型采用的就是Proactor模式。
# 9、Java NIO 中的Buffer是什么?如何使用?
Buffer(缓冲区):
Java NIO Buffers用于和NIO Channel交互。 我们从Channel中读取数据到buffers里,从Buffer把数据写入到Channels;
Buffer本质上就是一块内存区;
一个Buffer有三个属性是必须掌握的,分别是:capacity容量、position位置、limit限制。
Buffer的常见方法
Buffer clear() Buffer flip() Buffer rewind() Buffer position(int newPosition)