Java高并发编程之并发容器ConcurrentHashMap

ConcurrentHashMap出现了两个版本,1.8之前使用分段锁(分离锁),1.8抛弃了原有的 Segment 分段锁,而采用了 CAS + synchronized 来保证并发安全性。也将 1.7 中存放数据的 HashEntry 改为 Node,但作用都是相同的。其中的 val next 都用了 volatile 修饰,保证了可见性。

基于java1.7的实现,结构图:

如图所示,是由 Segment 数组、HashEntry 组成,和 HashMap 一样,仍然是数组加链表。

它的核心成员变量:

/**
 * Segment 数组,存放数据时首先需要定位到具体的 Segment 中。
 */
final Segment<K,V>[] segments;
transient Set<K> keySet;
transient Set<Map.Entry<K,V>> entrySet;
1
2
3
4
5
6

Segment 是 ConcurrentHashMap 的一个内部类,主要的组成如下:

static final class Segment<K,V> extends ReentrantLock implements Serializable {
       private static final long serialVersionUID = 2249069246763182397L;
       
       // 和 HashMap 中的 HashEntry 作用一样,真正存放数据的桶
       transient volatile HashEntry<K,V>[] table;
       transient int count;
       transient int modCount;
       transient int threshold;
       final float loadFactor;
}
1
2
3
4
5
6
7
8
9
10

其中的HashEntry:

static final class HashEnter<K,V>{
		final int hash;
		final K key;
		volatile V value;
		volatile HashEntry<K,V> next; 
}
1
2
3
4
5
6

和 HashMap 非常类似,唯一的区别就是其中的核心数据如 value ,以及链表都是 volatile 修饰的,保证了获取时的可见性。原理上来说:ConcurrentHashMap 采用了分段锁技术,其中 Segment 继承于 ReentrantLock。不会像 HashTable 那样不管是 put 还是 get 操作都需要做同步处理,理论上 ConcurrentHashMap 支持 CurrencyLevel (Segment 数组数量)的线程并发。每当一个线程占用锁访问一个 Segment 时,不会影响到其他的 Segment。

put()—首先是通过 key 定位到 Segment,之后在对应的 Segment 中进行具体的 put。

public V put(K key, V value) {
    Segment<K,V> s;
    if (value == null)
        throw new NullPointerException();
    int hash = hash(key);
    int j = (hash >>> segmentShift) & segmentMask;
    if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
         (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
        s = ensureSegment(j);
    return s.put(key, hash, value, false);
}
1
2
3
4
5
6
7
8
9
10
11
final V put(K key, int hash, V value, boolean onlyIfAbsent) {
    HashEntry<K,V> node = tryLock() ? null :
        scanAndLockForPut(key, hash, value);
    V oldValue;
    try {
        HashEntry<K,V>[] tab = table;
        int index = (tab.length - 1) & hash;
        HashEntry<K,V> first = entryAt(tab, index);
        for (HashEntry<K,V> e = first;;) {
            if (e != null) {
                K k;
                if ((k = e.key) == key ||
                    (e.hash == hash && key.equals(k))) {
                    oldValue = e.value;
                    if (!onlyIfAbsent) {
                        e.value = value;
                        ++modCount;
                    }
                    break;
                }
                e = e.next;
            }
            else {
                if (node != null)
                    node.setNext(first);
                else
                    node = new HashEntry<K,V>(hash, key, value, first);
                int c = count + 1;
                if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                    rehash(node);
                else
                    setEntryAt(tab, index, node);
                ++modCount;
                count = c;
                oldValue = null;
                break;
            }
        }
    } finally {
        unlock();
    }
    return oldValue;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

虽然 HashEntry 中的 value 是用 volatile 关键词修饰的,但是并不能保证并发的原子性,所以 put 操作时仍然需要加锁处理。首先第一步的时候会尝试获取锁,如果获取失败肯定就有其他线程存在竞争,则利用 scanAndLockForPut() 自旋获取锁。

  1. 尝试自旋获取锁。
  2. 如果重试的次数达到了 MAX_SCAN_RETRIES 则改为阻塞锁获取,保证能获取成功。

再结合图看看 put 的流程。

  1. 将当前 Segment 中的 table 通过 key 的 hashcode 定位到 HashEntry。
  2. 遍历该 HashEntry,如果不为空则判断传入的 key 和当前遍历的 key 是否相等,相等则覆盖旧的 value。
  3. 不为空则需要新建一个 HashEntry 并加入到 Segment 中,同时会先判断是否需要扩容。
  4. 最后会解除在 1 中所获取当前 Segment 的锁。

# get 方法

public V get(Object key) {
    Segment<K,V> s; // manually integrate access methods to reduce overhead
    HashEntry<K,V>[] tab;
    int h = hash(key);
    long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
    if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
        (tab = s.table) != null) {
        for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                 (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
             e != null; e = e.next) {
            K k;
            if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                return e.value;
        }
    }
    return null;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

只需要将 Key 通过 Hash 之后定位到具体的 Segment ,再通过一次 Hash 定位到具体的元素上。

由于 HashEntry 中的 value 属性是用 volatile 关键词修饰的,保证了内存可见性,所以每次获取时都是最新值。

ConcurrentHashMap 的 get 方法是非常高效的,因为整个过程都不需要加锁

1.7 已经解决了并发问题,并且能支持 N 个 Segment 这么多次数的并发,但依然存在 HashMap 在 1.7 版本中的问题。 那就是查询遍历链表效率太低。因此 1.8 做了一些数据结构上的调整。首先来看下底层的组成结构:

其中抛弃了原有的 Segment 分段锁,而采用了 CAS + synchronized 来保证并发安全性。也将 1.7 中存放数据的 HashEntry 改为 Node,但作用都是相同的。其中的 val next 都用了 volatile 修饰,保证了可见性。

put方法

public V put(K key, V value) {
  return putVal(key, value, false);
}

/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
  if (key == null || value == null) throw new NullPointerException();
  int hash = spread(key.hashCode());
  int binCount = 0;
  for (Node<K,V>[] tab = table;;) {
      Node<K,V> f; int n, i, fh;
      if (tab == null || (n = tab.length) == 0)
          tab = initTable();
      else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
          if (casTabAt(tab, i, null,
                        new Node<K,V>(hash, key, value, null)))
              break;                   // no lock when adding to empty bin
      }
      else if ((fh = f.hash) == MOVED)
          tab = helpTransfer(tab, f);
      else {
          V oldVal = null;
          synchronized (f) {
              if (tabAt(tab, i) == f) {
                  if (fh >= 0) {
                      binCount = 1;
                      for (Node<K,V> e = f;; ++binCount) {
                          K ek;
                          if (e.hash == hash &&
                              ((ek = e.key) == key ||
                                (ek != null && key.equals(ek)))) {
                              oldVal = e.val;
                              if (!onlyIfAbsent)
                                  e.val = value;
                              break;
                          }
                          Node<K,V> pred = e;
                          if ((e = e.next) == null) {
                              pred.next = new Node<K,V>(hash, key,
                                                        value, null);
                              break;
                          }
                      }
                  }
                  else if (f instanceof TreeBin) {
                      Node<K,V> p;
                      binCount = 2;
                      if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,value)) != null) {
                          oldVal = p.val;
                          if (!onlyIfAbsent)
                              p.val = value;
                      }
                  }
              }
          }
          if (binCount != 0) {
              if (binCount >= TREEIFY_THRESHOLD)
                  treeifyBin(tab, i);
              if (oldVal != null)
                  return oldVal;
              break;
          }
      }
  }
  addCount(1L, binCount);
  return null;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
  • 根据 key 计算出 hashcode 。
  • 判断是否需要进行初始化。
  • f 即为当前 key 定位出的 Node,如果为空表示当前位置可以写入数据,利用 CAS 尝试写入,失败则自旋保证成功。如果当前位置的 hashcode == MOVED == -1,则需要进行扩容。
  • 如果都不满足,则利用 synchronized 锁写入数据。
  • 如果数量大于 TREEIFY_THRESHOLD 则要转换为红黑树。

get方法

public V get(Object key) {
        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
        int h = spread(key.hashCode());
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (e = tabAt(tab, (n - 1) & h)) != null) {
            if ((eh = e.hash) == h) {
                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                    return e.val;
            }
            else if (eh < 0)
                return (p = e.find(h, key)) != null ? p.val : null;
            while ((e = e.next) != null) {
                if (e.hash == h &&
                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
  • 根据计算出来的 hashcode 寻址,如果就在桶上那么直接返回值。
  • 如果是红黑树那就按照树的方式获取值。
  • 就不满足那就按照链表的方式遍历获取值。

1.8 在 1.7 的数据结构上做了大的改动,采用红黑树之后可以保证查询效率(O(logn)),甚至取消了 ReentrantLock 改为了 synchronized,这样可以看出在新版的 JDK 中对 synchronized 优化是很到位的。

上次更新: 2020/07/29, 14:07:00
最近更新
01
RabbitMQ简介
10-27
02
聊聊Java多态
10-21
03
JVM垃圾回收器
10-16
更多文章>